Let us assume the length of the shortest side of the triangle be x cm

According to the question, length of the longest side = 3x cm

And, length of third side = (3x – 2) cm

As, the least perimeter of the triangle = 61 cm

Thus, x + 3x + (3x – 2) cm ≥ 61 cm

= 7x – 2 ≥ 61

= 7x ≥ 63

Now divide by 7 we get

= \( \dfrac{7x}{7} ≥\dfrac{63}{7}\)

= x ≥ 9

Hence, the minimum length of the shortest side will be 9 cm

Answered by Abhisek | 1 year agoSolve each of the following in equations and represent the solution set on the number line \( \dfrac{5x}{4}-\dfrac{4x-1}{3}>1,\) where x ϵ R.

Solve each of the following in equations and represent the solution set on the number line.\( \dfrac{5x-8}{3}\geq \dfrac{4x-7}{2}\), where x ϵ R.

Solve each of the following in equations and represent the solution set on the number line. 3 – 2x ≥ 4x – 9, where x ϵ R.

Solve each of the following in equations and represent the solution set on the number line. 3x – 4 > x + 6, where x ϵ R.

Solve each of the following in equations and represent the solution set on the number line. 5x + 2 < 17, where

**(i) **x ϵ Z,

**(ii)** x ϵ R.