Solve the inequalities $$7 ≤ \dfrac{(3x+11)}{2}≤ 11$$

Asked by Pragya Singh | 1 year ago |  94

##### Solution :-

The inequality given is,

$$7 ≤ \dfrac{(3x+11)}{2}≤ 11$$

14 ≤ 3x + 11 ≤ 22

⇒ 14 – 11 ≤ 3x + 11 – 11 ≤ 22 – 11

⇒ 3 ≤ 3x ≤ 11

⇒ 1 ≤ x ≤ $$\dfrac{11}{3}$$

Hence, all real numbers x greater than or equal to -4 but less than or equal to 2 are solution of given equality.

x ∈ [1, $$\dfrac{11}{3}$$]

Answered by Abhisek | 1 year ago

### Related Questions

#### Solve each of the following in equations and represent the solution set on the number line

Solve each of the following in equations and represent the solution set on the number line $$\dfrac{5x}{4}-\dfrac{4x-1}{3}>1,$$ where x ϵ R.

#### Solve each of the following in equations and represent the solution set on the number line.

Solve each of the following in equations and represent the solution set on the number line.$$\dfrac{5x-8}{3}\geq \dfrac{4x-7}{2}$$, where x ϵ R.

#### Solve each of the following in equations and represent the solution set on the number line. 3 – 2x ≥ 4x – 9,

Solve each of the following in equations and represent the solution set on the number line. 3 – 2x ≥ 4x – 9, where x ϵ R.

#### Solve each of the following in equations and represent the solution set on the number line. 3x – 4 > x + 6

Solve each of the following in equations and represent the solution set on the number line. 3x – 4 > x + 6, where x ϵ R.