By splitting the given 1.1 and then applying binomial theorem, the first few terms of (1.1)10000 can be obtained as
(1.1)10000 = (1 + 0.1)10000
= (1 + 0.1)10000 C1 (1.1) + other positive terms
= 1 + 10000 × 1.1 + other positive terms
= 1 + 11000 + other positive terms
> 1000
(1.1)10000 > 1000
Answered by Abhisek | 1 year agoFind the term independent of x in the expansion of \( (\dfrac{3}{2x^2} – \dfrac{1}{3x})^9\)
Find the middle term in the expansion of \((x-\dfrac{ 1}{x})^{2n+1}\)
Find the middle term in the expansion of (1 + 3x + 3x2 + x3)2n
Find the middle term in the expansion of \( (\dfrac{x}{a} – \dfrac{a}{x})^{10}\)