The general term Tr+1 in the binomial expansion is given by
Tr+1 = n C r an-r br…….. (i)
Here a = x2 , n = 6 and b = -y
Putting values in (i)
Tr+1 = 6Cr x 2(6-r) (-1)r yr
\( \dfrac{6!}{r!(6-r)!}\times x^{12-2r}\times (-1)^r\times y^r\)
\( (-1)^r \dfrac{6!}{r!(6-r)!}\times x^{12-2r}\times y^r\)
= -1r 6cr .x12 – 2r. yr
Answered by Pragya Singh | 1 year agoFind the term independent of x in the expansion of \( (\dfrac{3}{2x^2} – \dfrac{1}{3x})^9\)
Find the middle term in the expansion of \((x-\dfrac{ 1}{x})^{2n+1}\)
Find the middle term in the expansion of (1 + 3x + 3x2 + x3)2n
Find the middle term in the expansion of \( (\dfrac{x}{a} – \dfrac{a}{x})^{10}\)