Find the value of \( (a^2+\sqrt{a^2-1})^4+(a^2-\sqrt{a^2-1})^4\)

Asked by Pragya Singh | 1 year ago |  111

1 Answer

Solution :-

Firstly, the expression is simplified by using Binomial Theorem

\( (x+y)^4+(x-y)^4\)

This can be done as

\( (x+y)^4=^4C_0x^4+\;^4C_1x^3y+\;\)

\( ^4C_2x^2y^2+\;^4C_3xy^3+\;^4C_4y^4\)

\( x^4+4x^3y+6x^2y^2+4xy^3+y^4\)

\( (x-y)^4=\;^4C_0x^4-\;^4C_1x^3y+\;\)

\( ^4C_2x^2y^2-\;^4C_3xy^3+\;^4C_4y^4\)

\( x^4-4x^3y+6x^2y^2-4xy^3+y^4\)

Putting \( x=a^2\) and \( y=\sqrt{a^2-1}\), we obtain

\( (a^2+\sqrt{a^2-1})^4+(a^2-\sqrt{a^2-1})^4\)

\( 2[(a^2)^4+6(a^2)^2(\sqrt{a^2-1}^2+(\sqrt{a^2-1})^4]\)

\( 2[a^8+6a^4(a^2-1)+(a^2-1)^2]\)

\( 2[a^8+6a^4-6a^4+a^4-2a^2+1]\)

\( = 2[a^8+6a^6-5a^4-2a^2+1]\)

\( 2a^8+12a^6-10a^4-4a^2+2\)

Answered by Abhisek | 1 year ago

Related Questions

Find the term independent of x in the expansion of \( (\dfrac{3}{2x^2} – \dfrac{1}{3x})^9\)

Class 11 Maths Binomial Theorem View Answer

Find the middle term in the expansion of \((x-\dfrac{ 1}{x})^{2n+1}\)

Class 11 Maths Binomial Theorem View Answer

Find the middle term in the expansion of (1 + 3x + 3x2 + x3)2n

Class 11 Maths Binomial Theorem View Answer

Find the middle term in the expansion of \( (\dfrac{x}{a} – \dfrac{a}{x})^{10}\)

Class 11 Maths Binomial Theorem View Answer