In the expansion,
\( (a+b)^n=\;^nC_0a^n+^nC_1a^{n-1}+^nC_2a^{n-2}b^2\)
\( +......+^nC_{n-1}+^nC_nb^n\)
Fifth term from the beginning \( ^nC_4a^{n-4}b^4\)
Fifth term from the end = \( ^nC_4a^4b^{4-4}\)
Therefore, it is evident that in the expansion of
\( (\sqrt[4]{2} +\dfrac{1}{\sqrt[4]{3} })^n\) are fifth term from the beginning is
\( ^nC_4(\sqrt[4]{2})^{n-4}(\dfrac{1}{\sqrt[4]{2}})^4\) and the fifth term from the end is
\( ^nC_{n-4}(\sqrt[4]{2})^4(\dfrac{1}{\sqrt[4]{3}})^{n-4}\)
\( ^nC_4(\sqrt[4]{2})^{n-4}(\dfrac{1}{\sqrt[4]{3}})^4\)
= \( ^nC_4\dfrac{(\sqrt[4]{2})^n}{(\sqrt[4]{2})^n}\times \dfrac{1}{3}\)
\( =\dfrac{n!}{6\times 4!(n-4)!}(\sqrt[4]{2})^n\)..........(1)
\( ^nC_{n-4}(\sqrt[4]{2})^n(\dfrac{1}{\sqrt[4]{2}})^{n-4}\)
= \( ^nC_{n-4}\dfrac{(\sqrt[4]{3})^4}{(\sqrt[4]{3})^n}\)
\( =^nC_{n-4}\times 2\times \dfrac{3}{(\sqrt[4]{3})^n}\)
= \( \dfrac{6!}{(n-4)!4!}\times \dfrac{1}{(\sqrt[4]{3})^n}\) ...........(2)
It is given that the ratio of the fifth term from the beginning to the fifth term from the end is \(\sqrt{ 6} :1.\) Therefore, from (1) and (2), we obtain
\( =\dfrac{n!}{6\times 4!(n-4)!}(\sqrt[4]{2})^n:\)
= \( \dfrac{6!}{(n-4)!4!}\times \dfrac{1}{(\sqrt[4]{3})^n}=\sqrt{ 6} :1\)
\(=\dfrac{(\sqrt[4]{2})^n}{6}:\dfrac{6}{(\sqrt[4]{3})^n}=\sqrt{ 6} :1\)
= \((\sqrt[4]{2})^n=36 \sqrt{ 6} \)
= \( 6^\dfrac{n}{4}=6^\dfrac{5}{2}\)
= \( \dfrac{n}{4}=\dfrac{5}{2}\)
\( n=4\times \dfrac{5}{2}=10\)
Thus, the value of n is 10.
Answered by Abhisek | 1 year agoFind the term independent of x in the expansion of \( (\dfrac{3}{2x^2} – \dfrac{1}{3x})^9\)
Find the middle term in the expansion of \((x-\dfrac{ 1}{x})^{2n+1}\)
Find the middle term in the expansion of (1 + 3x + 3x2 + x3)2n
Find the middle term in the expansion of \( (\dfrac{x}{a} – \dfrac{a}{x})^{10}\)