Expand using Binomial Theorem 

\((1+ \dfrac{x}{2}-\dfrac{2}{x})^4,x\neq 0\)

Asked by Pragya Singh | 1 year ago |  120

1 Answer

Solution :-

\( ^nC_0(1+\dfrac{x}{2})^4-\; ^nC_2(1+\dfrac{x}{2})^2-\;\)

\( ^nC_3(1+\dfrac{x}{2})(\dfrac{2}{x})^3+\;^nC_4(\dfrac{2}{x})^4\)

\((1+ \dfrac{x}{2})^4-4(1+ \dfrac{x}{2})^3(\dfrac{2}{x})\)

\( +6(1+x+ \dfrac{x^2}{4}) (\dfrac{4}{x^2})-4(1+ \dfrac{x}{2})\)

\( (\dfrac{8}{x^3})+\dfrac{16}{x^4}\)

\((1+ \dfrac{x}{2})^4-\dfrac{8}{x}(1+ \dfrac{x}{2})^3\)

\( +\dfrac{24}{x^2}+\dfrac{24}{x}+6-\dfrac{32}{x^3}-\dfrac{16}{x^2}+\dfrac{16}{x^4}\)

\( (1+ \dfrac{x}{2})^4-\dfrac{8}{x}(1+ \dfrac{x}{2})^3\)

\( +\dfrac{8}{x^2}+\dfrac{24}{x}+6-\dfrac{32}{x^3}+\dfrac{16}{x^4}\).............(1)

Again by using Binomial Theorem, we obtain

\( (1+ \dfrac{x}{2})^4=\;^4C_0(1)^4+\;^4C_1(1)^3\dfrac{x}{2}\)

\( +\;^4C_2(1)^2(\dfrac{x^2}{2})+\;^4C_3(1)^3(\dfrac{x}{2})^3+\;^4C_4(\dfrac{x}{2})^4\)

\( 1+4\times \dfrac{x}{2}+6\times \dfrac{x^4}{4}\times +4\times \dfrac{x^3}{8}+\dfrac{x^3}{16}\)

\( 1+2x+6 \dfrac{3x^2}{2}+\dfrac{x^3}{2}+\dfrac{x^4}{16}\)..............(2)

\((1+ \dfrac{x}{2})^3=\;^3C_0(1)^3+\;^3C_2(1)^2(\dfrac{x}{2})\)

\( +\;^3C_3(1)\dfrac{x}{2}^3\)

\( 1+\dfrac{3x}{2}+\dfrac{3x^2}{4}+\dfrac{x^3}{8}+\dfrac{x^3}{8}\) ..........(3)

From (1), (2) and (3), we obtain

\([ (1+\dfrac{x}{2})-\dfrac{2}{x}]^4\)

\( \dfrac{16}{x}+\dfrac{8}{x^2}-\dfrac{32}{x^3}+\dfrac{16}{x^4}-4x\)

\( +\dfrac{x^2}{2}+\dfrac{x^3}{2}+\dfrac{x^4}{16}-5\)

Answered by Pragya Singh | 1 year ago

Related Questions

Find the term independent of x in the expansion of \( (\dfrac{3}{2x^2} – \dfrac{1}{3x})^9\)

Class 11 Maths Binomial Theorem View Answer

Find the middle term in the expansion of \((x-\dfrac{ 1}{x})^{2n+1}\)

Class 11 Maths Binomial Theorem View Answer

Find the middle term in the expansion of (1 + 3x + 3x2 + x3)2n

Class 11 Maths Binomial Theorem View Answer

Find the middle term in the expansion of \( (\dfrac{x}{a} – \dfrac{a}{x})^{10}\)

Class 11 Maths Binomial Theorem View Answer