Prove the following by using the principle of mathematical induction for all \( n\in N\)

\( 1.3+2.3^2+3.3^3+...+n.3^n\)

\( =\dfrac{(2n-1)3^{n+1}+3}{4}\)

Asked by Abhisek | 1 year ago |  65

1 Answer

Solution :-

Let us denote the given equality by P(n), i.e.,

P(n): \( 1.3+2.3^2+3.3^3+...+n.3^n\)

\( =\dfrac{(2n-1)3^{n+1}+3}{4}\)

For n=1,

L.H.S = 1.31=3

R.H.S \( =\dfrac{(2.1-1)3^{1+1}+3}{4}\)

 \( =\dfrac{3^2+3}{4}\)

\( \dfrac{12}{4}=3\)

Therefore, P(n) is true for n=1.

Let us assume that P(k) is true for some positive integer k , i.e.,

\( 1.3+2.3^2+3.3^3+...+k.3^k\)

\( =\dfrac{(2k-1)3^{k+1}+3}{4}\) .........(i)

Now, we have to prove that \( P(k+1)\) is also true

Consider

\( 1.3+2.3^2+3.3^3+...+k.3^k+(k+1).3^{k+1}\)

\( 1.3+2.3^2+3.3^3+...+k.3^k+(k+1).3^{k+1}\)

\( \dfrac{(2k-1)3^{k+1}+3}{4}+(k+1)3^{k-1}\)......... [Using (i)]

\( \dfrac{(2k-1)3^{k+1}+3+4(k+1)3^{k+1}}{4}\)

\( \dfrac{3^{k+1}(6k+3)+3}{4}\)

\( \dfrac{3^{k+1}.3(2k+1)+3}{4}\)

\( \dfrac{(3^{k+1)+1}(2k+1)+3}{4}\)

\( \dfrac{\{2({k+1})-1\}3^{(k+1)+1}+3}{4}\)

Therefore, P(k+1) holds whenever P(k) holds.

Hence, the given equality is true for all natural numbers i.e., N by the principle of mathematical induction.

Answered by Abhisek | 1 year ago

Related Questions

a + (a + d) + (a + 2d) + … + (a + (n-1)d) = \( \dfrac{n}{2}\) [2a + (n-1)d]

Class 11 Maths Principle of Mathematical Induction View Answer