We can write the given statement as
P (n): 32n + 2 – 8n – 9 is divisible by 8
If n = 1 we get
P (1) = 32 × 1 + 2 – 8 × 1 – 9 = 64, which is divisible by 8
Which is true.
Consider P (k) be true for some positive integer k
32k + 2 – 8k – 9 is divisible by 8
32k + 2 – 8k – 9 = 8m, where m ∈ N …… (1)
Now let us prove that P (k + 1) is true.
Here
3 2(k + 1) + 2 – 8 (k + 1) – 9
We can write it as
= 3 2k + 2 . 32 – 8k – 8 – 9
By adding and subtracting 8k and 9 we get
= 32 (32k + 2 – 8k – 9 + 8k + 9) – 8k – 17
On further simplification
= 32 (32k + 2 – 8k – 9) + 32 (8k + 9) – 8k – 17
From equation (1) we get
= 9. 8m + 9 (8k + 9) – 8k – 17
By multiplying the terms
= 9. 8m + 72k + 81 – 8k – 17
So we get
= 9. 8m + 64k + 64
By taking out the common terms
= 8 (9m + 8k + 8)
= 8r, where r = (9m + 8k + 8) is a natural number
So 3 2(k + 1) + 2 – 8 (k + 1) – 9 is divisible by 8
P (k + 1) is true whenever P (k) is true.
Therefore, by the principle of mathematical induction, statement P (n) is true for all natural numbers i.e. n.
Answered by Abhisek | 1 year agoGiven an example of a statement P (n) such that it is true for all n ϵ N.
a + (a + d) + (a + 2d) + … + (a + (n-1)d) = \( \dfrac{n}{2}\) [2a + (n-1)d]
72n + 23n – 3. 3n – 1 is divisible by 25 for all n ϵ N
n (n + 1) (n + 5) is a multiple of 3 for all n ϵ N.