Find the multiplicative inverse of the complex number \( \sqrt{5}+3i\)

Asked by Pragya Singh | 1 year ago |  98

1 Answer

Solution :-

Let’s consider \( z = \sqrt{5} + 3i\)

Then,

\( \overline{z}= \sqrt{5} -3i\) and 

\( |z|^2=(\sqrt{5})^2+3^2=5+9=14\)

Thus, the multiplicative inverse of \(\sqrt{5} + 3i\) is given by z-1

z-1 \( \dfrac{\overline{z}}{|z|^2}=\dfrac{ \sqrt{5} -3i}{14}\)

\( \dfrac{ \sqrt{5}}{14}-\dfrac{3i}{14}\)

Answered by Abhisek | 1 year ago

Related Questions