Solve the equation \( \sqrt{2}x^2 + x + \sqrt{2} = 0\)

Asked by Abhisek | 2 years ago |  138

1 Answer

Solution :-

Quadratic equation \( \sqrt{2}x^2 + x + \sqrt{2} = 0\)

On comparing it with ax2 + bx + c = 0, we have

a = \( \sqrt{2}\), b = 1, and c = \( \sqrt{2}\)

So, the discriminant of the given equation is

D = b2 – 4ac 

\( (1)^2 – 4 × \sqrt{2} × \sqrt{2}\)

= 1 – 8 = –7

Hence, the required solutions are:

\( \dfrac{-b\pm\sqrt{D}}{2a}\)

\( \dfrac{-1\pm\sqrt{-7}}{2\times \sqrt{2}}\)

\( \dfrac{-1\pm\sqrt{7i}}{2 \sqrt{2}}\)

Answered by Pragya Singh | 2 years ago

Related Questions