Expression
x - iy = \( \sqrt{\dfrac{a-ib}{c-id}}\)
\( \sqrt{\dfrac{a-ib}{c-id}}\times \dfrac{c+id}{c+id}\)
[On multiplying numerator and denominator by (c + id)]
\( \sqrt{\dfrac{(ac+bd)+i(ad-bc)}{c^2+d^2}}\)
\(( x - iy)^2 =\dfrac{(ac+bd)+i(ad-bc)}{c^2+d^2}\)
\( x^2 - y^2 -2ixy=\dfrac{(ac+bd)+i(ad-bc)}{c^2+d^2}\)
On comparing
\( x^2-y^2=\dfrac{ac+bd}{c^2+d^2}-2xy=\dfrac{ad-bc}{c^2+d^2}\).......(1)
\( (x^2+y^2)^2=(x^2-y^2)^2+4x^2y^2\)
\(( \dfrac{ac+bd}{c^2+d^2})^2+\dfrac{ad-bc}{c^2+d^2}\)
\( \dfrac{a^2c^2+b^2d^2+2acbd+a^2d^2+b^2c^2-2adbc}{(c^2+d^2)^2}\)
\( \dfrac{a^2c^2+b^2d^2+a^2d^2+b^2c^2}{(c^2+d^2)^2}\)
\( \dfrac{a^2(c^2+d^2)b^2(c^2+d^2)}{(c^2+d^2)^2}\)
\( \dfrac{(c^2+d^2)(a^2+b^2)}{(c^2+d^2)^2}\)
\( \dfrac{a^2+b^2}{c^2+d^2}\)
Hence, proved
Answered by Abhisek | 1 year agoShow that 1 + i10 + i20 + i30 is a real number?
Solve the quadratic equations by factorization method only 6x2 – 17ix – 12 = 0
Solve the quadratic equations by factorization method only x2 + (1 – 2i)x – 2i = 0
Solve the quadratic equations by factorization method only x2 + 10ix – 21 = 0
Solve the quadratic equations by factorization method only 17x2 – 8x + 1 = 0