Solve the equation \( 3x^2-4x+\dfrac{20}{3}=0\)

Asked by Pragya Singh | 1 year ago |  67

1 Answer

Solution :-

Given quadratic equation, \( 3x^2 – 4x + \dfrac{20}{3} = 0\)

It can be re-written as: 9x2 – 12x + 20 = 0

On comparing it with ax2 + bx + c = 0, we get

a = 9, b = –12, and c = 20

So, the discriminant of the given equation will be

D = b2 – 4ac = (–12)2 – 4 × 9 × 20 

= 144 – 720 = –576

Hence, the required solutions are

\( \dfrac{-b\pm\sqrt{D}}{2a}\)

\( \dfrac{-(12)\pm\sqrt{-576}}{2\times 9}\)

\( \dfrac{12\pm\sqrt{576i}}{18}\)

\( \dfrac{12\pm 24i}{18}\)

\( \dfrac{6(2\pm 4i)}{18}\)

\( \dfrac{2\pm 4i}{3}\)

\( \dfrac{2}{3}\pm \dfrac{4}{3}i\)

Hence, solved

Answered by Abhisek | 1 year ago

Related Questions