Solve the equation \( x^2-2x+\dfrac{3}{2}=0\)

Asked by Pragya Singh | 1 year ago |  73

1 Answer

Solution :-

Given quadratic equation, \( x^2 – 2x + \dfrac{3}{2} = 0\)

It can be re-written as 2x2 – 4x + 3 = 0

On comparing it with ax2 + bx + c = 0, we get

a = 2, b = –4, and c = 3

So, the discriminant of the given equation will be

D = b2 – 4ac = (–4)2 – 4 × 2 × 3 

= 16 – 24 = –8

Hence, the required solutions are

\( \dfrac{-b\pm\sqrt{D}}{2a}\)
\(= \dfrac{-(-4)\pm\sqrt{8}}{2\times 2}\)

=\( \dfrac{4\pm2\sqrt{2i}}{4}\)

\( \dfrac{2\pm\sqrt{2i}}{2}\)

\(1\pm \dfrac{\sqrt{2}}{2}i \)

Hence, solved

Answered by Abhisek | 1 year ago

Related Questions