Find the modulus of \( \dfrac{1+i}{1-i}-\dfrac{1-i}{1+i}\)

Asked by Abhisek | 1 year ago |  113

1 Answer

Solution :-

\( \dfrac{1+i}{1-i}-\dfrac{1-i}{1+i}\)

\( \dfrac{(1+i)^2-(1-i)^2}{(1-i)(1+i)}\)

\( \dfrac{1+i^2+2i-1-i^2+2i}{1^2+1^2}\)

\( \dfrac{4i}{2}=2i\)

\( \dfrac{1+i}{1-i}-\dfrac{1-i}{1+i}\)

\( |2i|\)

=\( \sqrt{2^2}=2\)

Answered by Pragya Singh | 1 year ago

Related Questions