If α and β are different complex numbers with |β| = 1, then find \(| \dfrac{\beta-\alpha}{1-\alpha\beta}|=1\)

Asked by Abhisek | 1 year ago |  142

1 Answer

Solution :-

Let α = a + ib & β = x + iy

It is given that, β = 1

\( \sqrt{x^2+y^2}=1\)

\(x^2+y^2=1\)

\( | \dfrac{(x+iy)-(a+ib)}{1-(a-ib)(x+iy)}|\)

\( | \dfrac{(x-a)-i(y-b)}{1-(ax+aiy-ibx+by)}|\)

\( | \dfrac{(x-a)-i(y-b)}{(1-ax-by)+i(bx-ay)}|\)

\( \dfrac{\sqrt{(x-a)^2+(y-b)^2}}{\sqrt{(1-ax-by)^2(bx-ay)^2}}\)

Hence, proved

Answered by Pragya Singh | 1 year ago

Related Questions