Here π radian = 180°
\( \dfrac{11}{16}radian=\dfrac{180}{\pi}\times \dfrac{11}{16}degree\)
= \(\dfrac{45\times 11}{\pi\times 4}degree\)
= \( \dfrac{45\times 11\times 7}{22\times 4}degree\)
= \( \dfrac{315}{8}degree\)
Further computing,
\( \dfrac{11}{16}radian= 39\dfrac{3}{8}degree\)
\( 39°+\dfrac{3\times 60}{8}minutes\)
Since 1° =60'
\( \dfrac{11}{16}radian= 39°+22' +\dfrac{1}{2}minutes\)
Since 1' =60'
\( \dfrac{11}{16}radian= 39°+22' +30''\)
Answered by Pragya Singh | 1 year agoprove that \(sin \dfrac{8π}{3} cos \dfrac{23π}{6} + cos \dfrac{13π}{3} sin \dfrac{35π}{6} = \dfrac{1}{2}\)
prove that \( 3 sin \dfrac{π}{6} sec \dfrac{π}{3} – 4 sin \dfrac{5π}{6} cot \dfrac{π}{4} = 1\)
prove that \( tan \dfrac{11π}{3} – 2 sin \dfrac{4π}{6} – \dfrac{3}{4} cosec^2 \dfrac{π}{4} + 4 cos^2 \dfrac{17π}{6} = \dfrac{(3 – 4\sqrt{3})}{2}\)
prove that cos 570° sin 510° + sin (-330°) cos (-390°) = 0
prove that tan (-125°) cot (-405°) – tan (-765°) cot (675°) = 0