Find the degree measures corresponding to the radian measures \( \dfrac{11}{16}\)

\(\)

Asked by Abhisek | 1 year ago |  86

1 Answer

Solution :-

Here π radian = 180°

\( \dfrac{11}{16}radian=\dfrac{180}{\pi}\times \dfrac{11}{16}degree\)

\(\dfrac{45\times 11}{\pi\times 4}degree\)

\( \dfrac{45\times 11\times 7}{22\times 4}degree\)

\( \dfrac{315}{8}degree\)

Further computing,

\( \dfrac{11}{16}radian= 39\dfrac{3}{8}degree\)

\( 39°+\dfrac{3\times 60}{8}minutes\)

Since 1° =60'

\( \dfrac{11}{16}radian= 39°+22' +\dfrac{1}{2}minutes\)

Since 1' =60'

\( \dfrac{11}{16}radian= 39°+22' +30''\)

Answered by Pragya Singh | 1 year ago

Related Questions

prove that \(sin \dfrac{8π}{3} cos \dfrac{23π}{6} + cos \dfrac{13π}{3} sin \dfrac{35π}{6} = \dfrac{1}{2}\)

Class 11 Maths Trigonometric Functions View Answer

prove that \( 3 sin \dfrac{π}{6} sec \dfrac{π}{3} – 4 sin \dfrac{5π}{6} cot \dfrac{π}{4} = 1\)

Class 11 Maths Trigonometric Functions View Answer

prove that \( tan \dfrac{11π}{3} – 2 sin \dfrac{4π}{6} – \dfrac{3}{4} cosec^2 \dfrac{π}{4} + 4 cos^2 \dfrac{17π}{6} = \dfrac{(3 – 4\sqrt{3})}{2}\)

Class 11 Maths Trigonometric Functions View Answer