Find the degree measures corresponding to the radian measures $$\dfrac{11}{16}$$



Asked by Abhisek | 1 year ago |  86

##### Solution :-

$$\dfrac{11}{16}radian=\dfrac{180}{\pi}\times \dfrac{11}{16}degree$$

$$\dfrac{45\times 11}{\pi\times 4}degree$$

$$\dfrac{45\times 11\times 7}{22\times 4}degree$$

$$\dfrac{315}{8}degree$$

Further computing,

$$\dfrac{11}{16}radian= 39\dfrac{3}{8}degree$$

$$39°+\dfrac{3\times 60}{8}minutes$$

Since 1° =60'

$$\dfrac{11}{16}radian= 39°+22' +\dfrac{1}{2}minutes$$

Since 1' =60'

$$\dfrac{11}{16}radian= 39°+22' +30''$$

Answered by Pragya Singh | 1 year ago

### Related Questions

#### prove that sin 8π/3 cos 23π/6 + cos 13π/3 sin 35π/6 = 1/2

prove that $$sin \dfrac{8π}{3} cos \dfrac{23π}{6} + cos \dfrac{13π}{3} sin \dfrac{35π}{6} = \dfrac{1}{2}$$

#### prove that 3 sin π/6 sec π/3 – 4 sin 5π/6 cot π/4 = 1

prove that $$3 sin \dfrac{π}{6} sec \dfrac{π}{3} – 4 sin \dfrac{5π}{6} cot \dfrac{π}{4} = 1$$

#### prove that tan 11π/3 – 2 sin 4π/6 – 3/4 cosec2 π/4 + 4 cos2 17π/6 = (3 – 4\sqrt{3})/2

prove that $$tan \dfrac{11π}{3} – 2 sin \dfrac{4π}{6} – \dfrac{3}{4} cosec^2 \dfrac{π}{4} + 4 cos^2 \dfrac{17π}{6} = \dfrac{(3 – 4\sqrt{3})}{2}$$