Find the values of other five trigonometric functions if cos x = \(- \dfrac{1}{2}\), x lies in third quadrant.

Asked by Pragya Singh | 1 year ago |  67

1 Answer

Solution :-

Here given that, \( cosx=-\dfrac{1}{2}\)

Therefore we have,

\( secx=\dfrac{1}{cosx}\)

\( \dfrac{1}{(-\dfrac{1}{2})}\) = -2

We know that

sin2 x + cos2 x = 1

We can write it as

sin2 x = 1 – cos2 x

Substituting cosx = \(- \dfrac{1}{2}\) in the formula, we obtain,

\( sin^2x=1-(-\dfrac{1}{2})^2\)

\( sin^2x=1-\dfrac{1}{4}\) = \(\dfrac{3}{4}\)

\( sinx\pm \dfrac{\sqrt{3}}{2}\)

Since x lies in the 3rd quadrant, the value of sin x will be negative.

\( sinx=- \dfrac{\sqrt{3}}{2}\)

Therefore, \( cosecx=\dfrac{1}{sinx}\)

\( \dfrac{1}{(\dfrac{-\sqrt{3}}{2})}=-\dfrac{2}{\sqrt{3}}\)

Hence,

\( tanx=\dfrac{sinx}{cosx}\)

\( \dfrac{(-\dfrac{\sqrt{3})}{2}}{(-\dfrac{1}{2})}=\sqrt{3}\) 

And

\( cotx=\dfrac{1}{tanx}\)

\(\dfrac{1}{\sqrt{3}}\)

Answered by Abhisek | 1 year ago

Related Questions

prove that \(sin \dfrac{8π}{3} cos \dfrac{23π}{6} + cos \dfrac{13π}{3} sin \dfrac{35π}{6} = \dfrac{1}{2}\)

Class 11 Maths Trigonometric Functions View Answer

prove that \( 3 sin \dfrac{π}{6} sec \dfrac{π}{3} – 4 sin \dfrac{5π}{6} cot \dfrac{π}{4} = 1\)

Class 11 Maths Trigonometric Functions View Answer

prove that \( tan \dfrac{11π}{3} – 2 sin \dfrac{4π}{6} – \dfrac{3}{4} cosec^2 \dfrac{π}{4} + 4 cos^2 \dfrac{17π}{6} = \dfrac{(3 – 4\sqrt{3})}{2}\)

Class 11 Maths Trigonometric Functions View Answer