Find the values of other five trigonometric functions if sin x = \( \dfrac{3}{5}\), x lies in second quadrant.

Asked by Pragya Singh | 1 year ago |  61

1 Answer

Solution :-

It is given that

sin x = \( \dfrac{3}{5}\)

We can write it as

\( cosecx=\dfrac{1}{sinx}\)

\(\dfrac{1}{\dfrac{3}{5}}\)\( \dfrac{5}{3}\)

We know that

sin2 x + cos2 x = 1

We can write it as

cos2 x = 1 – sin2 x

Substituting sin x =\( \dfrac{3}{5}\)  in the formula, we obtain,

\( cos^2x=1- (\dfrac{3}{5})^2\)

\( cos^2x=1- (\dfrac{9}{25})\) = \( \dfrac{16}{25}\)

cosx= \( \pm \dfrac{4}{5}\)

Since x lies in the 2nd quadrant, the value of cos x will be negative

cosx = \(-\dfrac{4}{5}\)

Therefore, secx = \( \dfrac{1}{cosx}\)

\( \dfrac{1}{(-\dfrac{4}{5})}=- \dfrac{5}{4}\)

Hence,

\( tanx=\dfrac{sinx}{cosx}\) 

\(\dfrac{(\dfrac{3}{5})}{(-\dfrac{4}{5})}=\dfrac{1}{2}=-\dfrac{3}{4}\)

And

\( cotx=\dfrac{1}{tanx}=-\dfrac{4}{3}\)

Answered by Abhisek | 1 year ago

Related Questions

prove that \(sin \dfrac{8π}{3} cos \dfrac{23π}{6} + cos \dfrac{13π}{3} sin \dfrac{35π}{6} = \dfrac{1}{2}\)

Class 11 Maths Trigonometric Functions View Answer

prove that \( 3 sin \dfrac{π}{6} sec \dfrac{π}{3} – 4 sin \dfrac{5π}{6} cot \dfrac{π}{4} = 1\)

Class 11 Maths Trigonometric Functions View Answer

prove that \( tan \dfrac{11π}{3} – 2 sin \dfrac{4π}{6} – \dfrac{3}{4} cosec^2 \dfrac{π}{4} + 4 cos^2 \dfrac{17π}{6} = \dfrac{(3 – 4\sqrt{3})}{2}\)

Class 11 Maths Trigonometric Functions View Answer