Find the values of other five trigonometric functions if cot x = \( \dfrac{3}{4}\), x lies in third quadrant.

Asked by Pragya Singh | 1 year ago |  61

1 Answer

Solution :-

It is given that

cot x =\( \dfrac{3}{4}\)

We can write it as

\(tanx= \dfrac{1}{cotx}=\dfrac{1}{\dfrac{3}{4}}=\dfrac{4}{3}\)

We know that

1 + tan2 x = sec2 x

We can write it as

1 + \(( \dfrac{4}{3})^2\)= sec2 x

Substituting the values

1 + \( \dfrac{16}{9}\) = sec2 x

cos2 x = \( \dfrac{25}{9}\)

sec x = ± \( \dfrac{5}{3}\)

Here x lies in the third quadrant so the value of sec x will be negative

sec x = \(- \dfrac{5}{3}\)

We can write it as

Therefore,
\( cos x=\dfrac{1}{secx}\)

\(\dfrac{1}{(-\dfrac{5}{3})}\)

\(-\dfrac{3}{5}\)

Now, \( tanx=\dfrac{sinx}{cosx}\)

Therefore, sinx=tanxcosx

Hence we have, sinx = \( \dfrac{4}{3}\times (-\dfrac{3}{5})\)

\((- \dfrac{4}{5})\)

And

\( cosecx=\dfrac{1}{sinx}\)

\(- \dfrac{5}{4}\)

Answered by Abhisek | 1 year ago

Related Questions

prove that \(sin \dfrac{8π}{3} cos \dfrac{23π}{6} + cos \dfrac{13π}{3} sin \dfrac{35π}{6} = \dfrac{1}{2}\)

Class 11 Maths Trigonometric Functions View Answer

prove that \( 3 sin \dfrac{π}{6} sec \dfrac{π}{3} – 4 sin \dfrac{5π}{6} cot \dfrac{π}{4} = 1\)

Class 11 Maths Trigonometric Functions View Answer

prove that \( tan \dfrac{11π}{3} – 2 sin \dfrac{4π}{6} – \dfrac{3}{4} cosec^2 \dfrac{π}{4} + 4 cos^2 \dfrac{17π}{6} = \dfrac{(3 – 4\sqrt{3})}{2}\)

Class 11 Maths Trigonometric Functions View Answer