Find the degree measures corresponding to the radian measures -4.

Asked by Abhisek | 1 year ago |  67

1 Answer

Solution :-

We know that,

π radian=180°

Therefore 1 radian

\( \dfrac{180°}{\pi}\)

Hence,
-4 radian = \( \dfrac{180°}{\pi}\times (-4)degree\)

\( \dfrac{180\times 7(-4)}{22}degree\)

\( \dfrac{-2520}{11}degree\)

\( -229 \dfrac{1}{11}degree\)

Since 1° =60'

We have,

-4 radian = \(-229°+ \dfrac{1\times 60}{11}minutes\)

\( -229°+5' +\dfrac{5}{11}minutes\)

Since 1'=60''

-4 radian = -229° 5'27"

Answered by Pragya Singh | 1 year ago

Related Questions

prove that \(sin \dfrac{8π}{3} cos \dfrac{23π}{6} + cos \dfrac{13π}{3} sin \dfrac{35π}{6} = \dfrac{1}{2}\)

Class 11 Maths Trigonometric Functions View Answer

prove that \( 3 sin \dfrac{π}{6} sec \dfrac{π}{3} – 4 sin \dfrac{5π}{6} cot \dfrac{π}{4} = 1\)

Class 11 Maths Trigonometric Functions View Answer

prove that \( tan \dfrac{11π}{3} – 2 sin \dfrac{4π}{6} – \dfrac{3}{4} cosec^2 \dfrac{π}{4} + 4 cos^2 \dfrac{17π}{6} = \dfrac{(3 – 4\sqrt{3})}{2}\)

Class 11 Maths Trigonometric Functions View Answer