We know that,
π radian=180°
Therefore 1 radian
= \( \dfrac{180°}{\pi}\)
Hence,
-4 radian = \( \dfrac{180°}{\pi}\times (-4)degree\)
= \( \dfrac{180\times 7(-4)}{22}degree\)
= \( \dfrac{-2520}{11}degree\)
= \( -229 \dfrac{1}{11}degree\)
Since 1° =60'
We have,
-4 radian = \(-229°+ \dfrac{1\times 60}{11}minutes\)
\( -229°+5' +\dfrac{5}{11}minutes\)
Since 1'=60''
-4 radian = -229° 5'27"
Answered by Pragya Singh | 1 year agoprove that \(sin \dfrac{8π}{3} cos \dfrac{23π}{6} + cos \dfrac{13π}{3} sin \dfrac{35π}{6} = \dfrac{1}{2}\)
prove that \( 3 sin \dfrac{π}{6} sec \dfrac{π}{3} – 4 sin \dfrac{5π}{6} cot \dfrac{π}{4} = 1\)
prove that \( tan \dfrac{11π}{3} – 2 sin \dfrac{4π}{6} – \dfrac{3}{4} cosec^2 \dfrac{π}{4} + 4 cos^2 \dfrac{17π}{6} = \dfrac{(3 – 4\sqrt{3})}{2}\)
prove that cos 570° sin 510° + sin (-330°) cos (-390°) = 0
prove that tan (-125°) cot (-405°) – tan (-765°) cot (675°) = 0