Find the degree measures corresponding to the radian measures -4.

Asked by Abhisek | 1 year ago |  67

##### Solution :-

We know that,

$$\dfrac{180°}{\pi}$$

Hence,
-4 radian = $$\dfrac{180°}{\pi}\times (-4)degree$$

$$\dfrac{180\times 7(-4)}{22}degree$$

$$\dfrac{-2520}{11}degree$$

$$-229 \dfrac{1}{11}degree$$

Since 1° =60'

We have,

-4 radian = $$-229°+ \dfrac{1\times 60}{11}minutes$$

$$-229°+5' +\dfrac{5}{11}minutes$$

Since 1'=60''

Answered by Pragya Singh | 1 year ago

### Related Questions

#### prove that sin 8π/3 cos 23π/6 + cos 13π/3 sin 35π/6 = 1/2

prove that $$sin \dfrac{8π}{3} cos \dfrac{23π}{6} + cos \dfrac{13π}{3} sin \dfrac{35π}{6} = \dfrac{1}{2}$$

#### prove that 3 sin π/6 sec π/3 – 4 sin 5π/6 cot π/4 = 1

prove that $$3 sin \dfrac{π}{6} sec \dfrac{π}{3} – 4 sin \dfrac{5π}{6} cot \dfrac{π}{4} = 1$$

#### prove that tan 11π/3 – 2 sin 4π/6 – 3/4 cosec2 π/4 + 4 cos2 17π/6 = (3 – 4\sqrt{3})/2

prove that $$tan \dfrac{11π}{3} – 2 sin \dfrac{4π}{6} – \dfrac{3}{4} cosec^2 \dfrac{π}{4} + 4 cos^2 \dfrac{17π}{6} = \dfrac{(3 – 4\sqrt{3})}{2}$$

#### prove that cos 570° sin 510° + sin (-330°) cos (-390°) = 0

prove that cos 570° sin 510° + sin (-330°) cos (-390°) = 0

#### prove that tan (-125°) cot (-405°) – tan (-765°) cot (675°) = 0

prove that tan (-125°) cot (-405°) – tan (-765°) cot (675°) = 0