Find the value of the trigonometric function \( tan=\dfrac{19\pi}{3}\)

Asked by Pragya Singh | 2 years ago |  91

1 Answer

Solution :-

We know that the values of tanx repeat after an interval of π or 180° .Therefore we can write,

\( tan=\dfrac{19\pi}{3}\)

\( tan6\dfrac{1}{3}\pi\)

\( tan(6\pi+\dfrac{\pi}{3})\)

\( tan\dfrac{\pi}{3}\)

\( \sqrt{3}\)

 

Answered by Abhisek | 2 years ago

Related Questions

prove that \(sin \dfrac{8π}{3} cos \dfrac{23π}{6} + cos \dfrac{13π}{3} sin \dfrac{35π}{6} = \dfrac{1}{2}\)

Class 11 Maths Trigonometric Functions View Answer

prove that \( 3 sin \dfrac{π}{6} sec \dfrac{π}{3} – 4 sin \dfrac{5π}{6} cot \dfrac{π}{4} = 1\)

Class 11 Maths Trigonometric Functions View Answer

prove that \( tan \dfrac{11π}{3} – 2 sin \dfrac{4π}{6} – \dfrac{3}{4} cosec^2 \dfrac{π}{4} + 4 cos^2 \dfrac{17π}{6} = \dfrac{(3 – 4\sqrt{3})}{2}\)

Class 11 Maths Trigonometric Functions View Answer