Prove that \( sin^2\dfrac{\pi}{6}+cos^2\dfrac{\pi}{3}-tan^2\dfrac{\pi}{4}=-\dfrac{1}{2}\)

Asked by Pragya Singh | 1 year ago |  55

1 Answer

Solution :-

Substituting the values of \( sin\dfrac{\pi}{6},cos \dfrac{\pi}{6},tan\dfrac{\pi}{4}\) on left hand side,

\( sin^2\dfrac{\pi}{6}+cos^2 \dfrac{\pi}{6}-tan^2\dfrac{\pi}{4}\)

\(( \dfrac{1}{2})^2+(\dfrac{1}{2})^2-(1)^2\)

\( \dfrac{1}{4}+\dfrac{1}{4}-1\)

\(- \dfrac{1}{2}= R.H.S.\)

Hence proved.

Answered by Abhisek | 1 year ago

Related Questions

prove that \(sin \dfrac{8π}{3} cos \dfrac{23π}{6} + cos \dfrac{13π}{3} sin \dfrac{35π}{6} = \dfrac{1}{2}\)

Class 11 Maths Trigonometric Functions View Answer

prove that \( 3 sin \dfrac{π}{6} sec \dfrac{π}{3} – 4 sin \dfrac{5π}{6} cot \dfrac{π}{4} = 1\)

Class 11 Maths Trigonometric Functions View Answer

prove that \( tan \dfrac{11π}{3} – 2 sin \dfrac{4π}{6} – \dfrac{3}{4} cosec^2 \dfrac{π}{4} + 4 cos^2 \dfrac{17π}{6} = \dfrac{(3 – 4\sqrt{3})}{2}\)

Class 11 Maths Trigonometric Functions View Answer