Prove that \( cot^2\dfrac{\pi}{6}+cosec\dfrac{5\pi}{6}+3tan^2\dfrac{\pi}{6}=6\)

Asked by Pragya Singh | 1 year ago |  64

1 Answer

Solution :-

Substituting the values of \( cot\dfrac{\pi}{6},cosec \dfrac{5\pi}{6},tan\dfrac{\pi}{6}\) on left hand side,

L.H.S. = \((\sqrt{3})^2+cosec\dfrac{5\pi}{6}+3tan^2\dfrac{\pi}{6}\)

\( (\sqrt{3})^2+cosec(\pi-\dfrac{\pi}{6})+3(\dfrac{1}{\sqrt{3}})^2\)

\( 3+cosec\dfrac{\pi}{6}+3\times \dfrac{1}{3}\)

Since cosecx repeat its value after interval of 2π,

We have, \( cosec\dfrac{5\pi}{6}=cosec\dfrac{\pi}{6}\)

L.H.S= 3+ 2 +1 =1

= R.H.S.

Hence proved.

Answered by Abhisek | 1 year ago

Related Questions

prove that \(sin \dfrac{8π}{3} cos \dfrac{23π}{6} + cos \dfrac{13π}{3} sin \dfrac{35π}{6} = \dfrac{1}{2}\)

Class 11 Maths Trigonometric Functions View Answer

prove that \( 3 sin \dfrac{π}{6} sec \dfrac{π}{3} – 4 sin \dfrac{5π}{6} cot \dfrac{π}{4} = 1\)

Class 11 Maths Trigonometric Functions View Answer

prove that \( tan \dfrac{11π}{3} – 2 sin \dfrac{4π}{6} – \dfrac{3}{4} cosec^2 \dfrac{π}{4} + 4 cos^2 \dfrac{17π}{6} = \dfrac{(3 – 4\sqrt{3})}{2}\)

Class 11 Maths Trigonometric Functions View Answer