Prove that \(2 sin^2\dfrac{3\pi}{4}+2cos^2\dfrac{\pi}{4}+2sec^2\dfrac{\pi}{3}=10\)

Asked by Pragya Singh | 1 year ago |  96

1 Answer

Solution :-

Substituting the values of \( sin\dfrac{3\pi}{4},cos \dfrac{\pi}{4},sec\dfrac{\pi}{3}\) on left hand side,

L.H.S.= \( 2 sin^2\dfrac{3\pi}{4}+2cos^2\dfrac{\pi}{4}+2sec^2\dfrac{\pi}{3}\)

\(2\{sin(\pi-\dfrac{\pi}{4})\}^2+2(\dfrac{1}{\sqrt{2}})^2+2(2)^2\)

\( 2\{sin\dfrac{\pi}{4}\}^2+2\times \dfrac{1}{2}+8\)

Since sinx repeat its value after interval of 2π

We have, \( sin\dfrac{3\pi}{4}= sin\dfrac{\pi}{4}\)

L.H.S 1 +1+ 8 

=10 =  R.H.S.

Hence proved.

Answered by Abhisek | 1 year ago

Related Questions

prove that \(sin \dfrac{8π}{3} cos \dfrac{23π}{6} + cos \dfrac{13π}{3} sin \dfrac{35π}{6} = \dfrac{1}{2}\)

Class 11 Maths Trigonometric Functions View Answer

prove that \( 3 sin \dfrac{π}{6} sec \dfrac{π}{3} – 4 sin \dfrac{5π}{6} cot \dfrac{π}{4} = 1\)

Class 11 Maths Trigonometric Functions View Answer

prove that \( tan \dfrac{11π}{3} – 2 sin \dfrac{4π}{6} – \dfrac{3}{4} cosec^2 \dfrac{π}{4} + 4 cos^2 \dfrac{17π}{6} = \dfrac{(3 – 4\sqrt{3})}{2}\)

Class 11 Maths Trigonometric Functions View Answer