Find the value of sin 75°

Asked by Abhisek | 1 year ago |  98

1 Answer

Solution :-

we have,

= sin75° =sin(45° +30° )

=sin45° cos30° +cos45° sin30°

Since we know that, sin(x+y)=sinxcosy+cosxsiny

Therefore we have,

sin75° = \( \dfrac{1}{\sqrt{2}}\times \dfrac{1}{2}+ \dfrac{1}{\sqrt{2}}\times \dfrac{1}{2}\)

\( \dfrac{1}{\sqrt{2}}\)

Answered by Pragya Singh | 1 year ago

Related Questions

prove that \(sin \dfrac{8π}{3} cos \dfrac{23π}{6} + cos \dfrac{13π}{3} sin \dfrac{35π}{6} = \dfrac{1}{2}\)

Class 11 Maths Trigonometric Functions View Answer

prove that \( 3 sin \dfrac{π}{6} sec \dfrac{π}{3} – 4 sin \dfrac{5π}{6} cot \dfrac{π}{4} = 1\)

Class 11 Maths Trigonometric Functions View Answer

prove that \( tan \dfrac{11π}{3} – 2 sin \dfrac{4π}{6} – \dfrac{3}{4} cosec^2 \dfrac{π}{4} + 4 cos^2 \dfrac{17π}{6} = \dfrac{(3 – 4\sqrt{3})}{2}\)

Class 11 Maths Trigonometric Functions View Answer