Find the value of tan 15°

Asked by Abhisek | 1 year ago |  103

1 Answer

Solution :-

It can be written as

tan15° = tan (45° – 30°)

Using formula

\( \dfrac{tan45°-tan30°}{1+tan45°+tan 30°}\)

\( tan(x-y)= \dfrac{tanx-tany}{1+tanxtany}\)

Since we know,

Therefore we have,

\( tan15°=\dfrac{1-\dfrac{1}{\sqrt{3}}}{1+1\dfrac{1}{\sqrt{3}}}\)

\( \dfrac{\dfrac{\sqrt{3}-1}{\sqrt{3}}}{\dfrac{\sqrt{3}+1}{\sqrt{3}}}=\dfrac{\sqrt{3}-1}{\sqrt{3}+1} \)

\( \dfrac{(\sqrt{3}-1)^2}{(\sqrt{3}+1)(\sqrt{3}-1)} \)

Further computing we have,

tan15° = \( \dfrac{3+1-2\sqrt{3}}{(\sqrt{3})^2-(1)^2}\)

\( \dfrac{4-2\sqrt{3}}{3-1}\)

\( 2-\sqrt{3}\)

Answered by Pragya Singh | 1 year ago

Related Questions

prove that \(sin \dfrac{8π}{3} cos \dfrac{23π}{6} + cos \dfrac{13π}{3} sin \dfrac{35π}{6} = \dfrac{1}{2}\)

Class 11 Maths Trigonometric Functions View Answer

prove that \( 3 sin \dfrac{π}{6} sec \dfrac{π}{3} – 4 sin \dfrac{5π}{6} cot \dfrac{π}{4} = 1\)

Class 11 Maths Trigonometric Functions View Answer

prove that \( tan \dfrac{11π}{3} – 2 sin \dfrac{4π}{6} – \dfrac{3}{4} cosec^2 \dfrac{π}{4} + 4 cos^2 \dfrac{17π}{6} = \dfrac{(3 – 4\sqrt{3})}{2}\)

Class 11 Maths Trigonometric Functions View Answer