Prove that, \( cos(\dfrac{3\pi}{2}+x)(Cos 2π+x)[cot(\dfrac{3\pi}{2}-x)+(Cot 2π+x)]=1\)

Asked by Abhisek | 1 year ago |  115

1 Answer

Solution :-

We know that cotx repeats same value after an interval 2π

L.H.S.= \( cos(\dfrac{3\pi}{2}+x)(Cos 2π+x)\)

\( [cot(\dfrac{3\pi}{2}-x)+(Cot 2π+x)]=1\)

=sinxcosx[tanx+cotx]

Substituting \( tanx=\dfrac{sinx}{cosx}\) and

\(cotx=\dfrac{cosx}{sinx}\),

L.H.S=sinxcosx \((\dfrac{sinx}{cosx}+\dfrac{cosx}{sinx})\)

\((sinxcosx) [\dfrac{sin^2x+cos^2x}{sinxcosx}]\)

= 1

= R.H.S.

Hence proved.

Answered by Pragya Singh | 1 year ago

Related Questions

prove that \(sin \dfrac{8π}{3} cos \dfrac{23π}{6} + cos \dfrac{13π}{3} sin \dfrac{35π}{6} = \dfrac{1}{2}\)

Class 11 Maths Trigonometric Functions View Answer

prove that \( 3 sin \dfrac{π}{6} sec \dfrac{π}{3} – 4 sin \dfrac{5π}{6} cot \dfrac{π}{4} = 1\)

Class 11 Maths Trigonometric Functions View Answer

prove that \( tan \dfrac{11π}{3} – 2 sin \dfrac{4π}{6} – \dfrac{3}{4} cosec^2 \dfrac{π}{4} + 4 cos^2 \dfrac{17π}{6} = \dfrac{(3 – 4\sqrt{3})}{2}\)

Class 11 Maths Trigonometric Functions View Answer