Prove that \( cos( \dfrac{3\pi}{4}+x)-cos(\dfrac{3\pi}{4}-x)=-\sqrt{2}sinx\)

Asked by Pragya Singh | 1 year ago |  62

1 Answer

Solution :-

We know that ,

cosA-cosB= -2sin \( ( \dfrac{A+B}{2})sin( \dfrac{A-B}{2})\)

\( cos( \dfrac{3\pi}{4}+x)-cos(\dfrac{3\pi}{4}-x)=-\sqrt{2}sinx\)

\(L.H.S= cos( \dfrac{3\pi}{4}+x)-cos(\dfrac{3\pi}{4}-x)\)

\( -2sin\{\dfrac{( \dfrac{3\pi}{4}+x)+(\dfrac{3\pi}{4}-x)}{2}\}\)

\( sin\{\dfrac{( \dfrac{3\pi}{4}+x)+(\dfrac{3\pi}{4}-x)}{2}\}\)

\( -2sin(\dfrac{3\pi}{4})sinx\)

Since sinx repeats the same value after an interval 2π ,

we have, \( sin(\dfrac{3\pi}{4})=sin(\pi-\dfrac{\pi}{4})\)

therefore,

L.H.S= -2sin\( \dfrac{\pi}{4}sinx\)

\( -2\times \dfrac{1}{\sqrt{2}}\times sinx\)

\( =-\sqrt{2}sinx\)

= R.H.S.

Hence proved.

Answered by Abhisek | 1 year ago

Related Questions

prove that \(sin \dfrac{8π}{3} cos \dfrac{23π}{6} + cos \dfrac{13π}{3} sin \dfrac{35π}{6} = \dfrac{1}{2}\)

Class 11 Maths Trigonometric Functions View Answer

prove that \( 3 sin \dfrac{π}{6} sec \dfrac{π}{3} – 4 sin \dfrac{5π}{6} cot \dfrac{π}{4} = 1\)

Class 11 Maths Trigonometric Functions View Answer

prove that \( tan \dfrac{11π}{3} – 2 sin \dfrac{4π}{6} – \dfrac{3}{4} cosec^2 \dfrac{π}{4} + 4 cos^2 \dfrac{17π}{6} = \dfrac{(3 – 4\sqrt{3})}{2}\)

Class 11 Maths Trigonometric Functions View Answer