Prove that sin2 6x – sin2 4x = sin 2x sin 10x

Asked by Pragya Singh | 1 year ago |  107

1 Answer

Solution :-

We know that,

sinA+sinB=2sin\( ( \dfrac{A+B}{2})cos( \dfrac{A-B}{2})\)

And

sinA-sinB=2cos\(\)\( ( \dfrac{A+B}{2})sin( \dfrac{A-B}{2})\)

L.H.S.=sin26x-sin24xa

=[sin6x+sin4x)(sin6x-sin4x)

\( [ (2sin \dfrac{6x+4x}{2})cos( \dfrac{6x-4x}{2})]\)

\( [ (2cos \dfrac{6x+4x}{2}).sin( \dfrac{6x-4x}{2})]\)

=(2sin5xcosx)(2cos5xsinx)

Now we know that, sin2x=2sinxcosx ,

Therefore we have,

L.H.S=(2sin5xcos5)(2sinxcosx)

=sin10xsin2x

= R.H.S.

Answered by Abhisek | 1 year ago

Related Questions

prove that \(sin \dfrac{8π}{3} cos \dfrac{23π}{6} + cos \dfrac{13π}{3} sin \dfrac{35π}{6} = \dfrac{1}{2}\)

Class 11 Maths Trigonometric Functions View Answer

prove that \( 3 sin \dfrac{π}{6} sec \dfrac{π}{3} – 4 sin \dfrac{5π}{6} cot \dfrac{π}{4} = 1\)

Class 11 Maths Trigonometric Functions View Answer

prove that \( tan \dfrac{11π}{3} – 2 sin \dfrac{4π}{6} – \dfrac{3}{4} cosec^2 \dfrac{π}{4} + 4 cos^2 \dfrac{17π}{6} = \dfrac{(3 – 4\sqrt{3})}{2}\)

Class 11 Maths Trigonometric Functions View Answer