Prove that cos2 2x – cos2 6x = sin 4x sin 8x

Asked by Pragya Singh | 1 year ago |  113

1 Answer

Solution :-

We know that,

cosA+cosB=2cos\( ( \dfrac{A+B}{2})cos( \dfrac{A-B}{2})\)

cosA-cosB=-2sin \( ( \dfrac{A+B}{2})sin( \dfrac{A-B}{2}) \)

L.H.S. =cos22x-cos26x

=(cos2x+cos6x)(cos2x-6x)

\([ 2cos(\dfrac{2x+6x}{2})cos( \dfrac{2x-6x}{2})]\)

\([ - 2sin(\dfrac{2x+6x}{2})sin( \dfrac{2x-6x}{2})]\)

We get

= [2 cos 4x cos (-2x)] [-2 sin 4x sin (-2x)]

It can be written as

= [2 cos 4x cos 2x] [–2 sin 4(–sin 2x)]

So we get

= (2 sin 4x cos 4x) (2 sin 2x cos 2x)

= sin 8x sin 4x

= RHS

Answered by Abhisek | 1 year ago

Related Questions

prove that \(sin \dfrac{8π}{3} cos \dfrac{23π}{6} + cos \dfrac{13π}{3} sin \dfrac{35π}{6} = \dfrac{1}{2}\)

Class 11 Maths Trigonometric Functions View Answer

prove that \( 3 sin \dfrac{π}{6} sec \dfrac{π}{3} – 4 sin \dfrac{5π}{6} cot \dfrac{π}{4} = 1\)

Class 11 Maths Trigonometric Functions View Answer

prove that \( tan \dfrac{11π}{3} – 2 sin \dfrac{4π}{6} – \dfrac{3}{4} cosec^2 \dfrac{π}{4} + 4 cos^2 \dfrac{17π}{6} = \dfrac{(3 – 4\sqrt{3})}{2}\)

Class 11 Maths Trigonometric Functions View Answer