Prove that \( \dfrac{cos9x-cos5x}{sin17x-sin3x}=-\dfrac{sin2x}{cos10x} \)

Asked by Pragya Singh | 1 year ago |  83

1 Answer

Solution :-

We know that,

cosA-cosB=-2sin \( ( \dfrac{A+B}{2})sin( \dfrac{A-B}{2})\)

sinA-sinB=2cos\( ( \dfrac{A+B}{2})sin( \dfrac{A-B}{2})\)

\( \dfrac{cos9x-cos5x}{sin17x-sin3x}=-\dfrac{sin2x}{cos10x} \)

\(L.H.S.= \dfrac{cos9x-cos5x}{sin17x-sin3x}\)

\( \dfrac{-2sin(\dfrac{9x+5x}{2}).sin(\dfrac{9x-5x}{2})}{2cos(\dfrac{17x+3x}{2}).sin(\dfrac{17x-3x}{2})}\)

\( \dfrac{-2sin7x.sin2x}{2cos10x.sin7x}\)

\(- \dfrac{sin2x}{cos10x}\)=  R.H.S.

Hence proved.

Answered by Abhisek | 1 year ago

Related Questions

prove that \(sin \dfrac{8π}{3} cos \dfrac{23π}{6} + cos \dfrac{13π}{3} sin \dfrac{35π}{6} = \dfrac{1}{2}\)

Class 11 Maths Trigonometric Functions View Answer

prove that \( 3 sin \dfrac{π}{6} sec \dfrac{π}{3} – 4 sin \dfrac{5π}{6} cot \dfrac{π}{4} = 1\)

Class 11 Maths Trigonometric Functions View Answer

prove that \( tan \dfrac{11π}{3} – 2 sin \dfrac{4π}{6} – \dfrac{3}{4} cosec^2 \dfrac{π}{4} + 4 cos^2 \dfrac{17π}{6} = \dfrac{(3 – 4\sqrt{3})}{2}\)

Class 11 Maths Trigonometric Functions View Answer