Prove that  \( \dfrac{sin5x+sin3x}{cos5x+cos3x}=tan4x\)

Asked by Pragya Singh | 1 year ago |  67

1 Answer

Solution :-

We know that

sinA+sinB=2sin \( ( \dfrac{A+B}{2})cos( \dfrac{A-B}{2})\),

cosA+cosB=2cos \( ( \dfrac{A+B}{2})cos( \dfrac{A-B}{2})\)

\( \dfrac{sin5x+sin3x}{cos5x+cos3x}=tan4x\)

Now ,

\( L.H.S.= \dfrac{sin5x+sin3x}{cos5x+cos3x}\)

\( \dfrac{2sin(\dfrac{5x+3x}{2})cos(\dfrac{5x-3x}{2})}{2cos(\dfrac{5x+3x}{2}).cos(\dfrac{5x-3x}{2})}\)

\( \dfrac{2sin4xcosx}{2cos4xcosx}\)

Further computing we have,

L.H.S=tan4x = R.H.S.

Answered by Abhisek | 1 year ago

Related Questions

prove that \(sin \dfrac{8π}{3} cos \dfrac{23π}{6} + cos \dfrac{13π}{3} sin \dfrac{35π}{6} = \dfrac{1}{2}\)

Class 11 Maths Trigonometric Functions View Answer

prove that \( 3 sin \dfrac{π}{6} sec \dfrac{π}{3} – 4 sin \dfrac{5π}{6} cot \dfrac{π}{4} = 1\)

Class 11 Maths Trigonometric Functions View Answer

prove that \( tan \dfrac{11π}{3} – 2 sin \dfrac{4π}{6} – \dfrac{3}{4} cosec^2 \dfrac{π}{4} + 4 cos^2 \dfrac{17π}{6} = \dfrac{(3 – 4\sqrt{3})}{2}\)

Class 11 Maths Trigonometric Functions View Answer