Prove that \( \dfrac{sinx-siny}{cosx+cosy}=tan\dfrac{x-y}{2}\)

Asked by Pragya Singh | 1 year ago |  51

1 Answer

Solution :-

We know that,

sinA-sinB=2cos\(( \dfrac{A+B}{2})sin( \dfrac{A-B}{2})\),

cosA+cosB=2cos\( ( \dfrac{A+B}{2})cos( \dfrac{A-B}{2})\)

\( \dfrac{sinx-siny}{cosx+cosy}=tan\dfrac{x-y}{2}\)

L.H.S.\( \dfrac{sinx-siny}{cosx+cosy}\)

\(\dfrac{2cos(\dfrac{x+y}{2}).sin(\dfrac{x-y}{2})}{2cos(\dfrac{x+y}{2}).cos(\dfrac{x-y}{2})}\)

\( \dfrac{sin(\dfrac{x-y}{2})}{cos(\dfrac{x-y}{2})}\)

\( tan(\dfrac{x-y}{2})\)

L.H.S=R.H.S

Hence proved.

Answered by Abhisek | 1 year ago

Related Questions

prove that \(sin \dfrac{8π}{3} cos \dfrac{23π}{6} + cos \dfrac{13π}{3} sin \dfrac{35π}{6} = \dfrac{1}{2}\)

Class 11 Maths Trigonometric Functions View Answer

prove that \( 3 sin \dfrac{π}{6} sec \dfrac{π}{3} – 4 sin \dfrac{5π}{6} cot \dfrac{π}{4} = 1\)

Class 11 Maths Trigonometric Functions View Answer

prove that \( tan \dfrac{11π}{3} – 2 sin \dfrac{4π}{6} – \dfrac{3}{4} cosec^2 \dfrac{π}{4} + 4 cos^2 \dfrac{17π}{6} = \dfrac{(3 – 4\sqrt{3})}{2}\)

Class 11 Maths Trigonometric Functions View Answer