Prove that \( \dfrac{sinx-sin3x}{sin^2x-cos^2x}=2sinx\)

Asked by Abhisek | 1 year ago |  71

1 Answer

Solution :-

We know that,

sinA-sinB=2cos\( ( \dfrac{A+B}{2})sin( \dfrac{A-B}{2})\)

And cos2A-sin2A=cos2A

L.H.S. = \( \dfrac{sinx-sin3x}{sin^2x-cos^2x}\)

\( \dfrac{2cos(\dfrac{x+3x}{2})sinx(\dfrac{x-3x}{2})}{-cos2x}\)

= -2× (-sinx)

Therefore , we have,

L.H.S=2sinx

= R.H.S.

Hence proved.

Answered by Pragya Singh | 1 year ago

Related Questions

prove that \(sin \dfrac{8π}{3} cos \dfrac{23π}{6} + cos \dfrac{13π}{3} sin \dfrac{35π}{6} = \dfrac{1}{2}\)

Class 11 Maths Trigonometric Functions View Answer

prove that \( 3 sin \dfrac{π}{6} sec \dfrac{π}{3} – 4 sin \dfrac{5π}{6} cot \dfrac{π}{4} = 1\)

Class 11 Maths Trigonometric Functions View Answer

prove that \( tan \dfrac{11π}{3} – 2 sin \dfrac{4π}{6} – \dfrac{3}{4} cosec^2 \dfrac{π}{4} + 4 cos^2 \dfrac{17π}{6} = \dfrac{(3 – 4\sqrt{3})}{2}\)

Class 11 Maths Trigonometric Functions View Answer