Prove that \( tan4x=\dfrac{4tanx(1-tan^2x)}{1-6tan^2x+tan^4x}\)

Asked by Abhisek | 1 year ago |  62

1 Answer

Solution :-

We know that 

\( tan2A=\dfrac{2tanA}{1-tan^2A} \)

L.H.S. = tan4x

=tan2(2x)

\(\dfrac{2tan2x}{1-tan^2(2x)} \)

\( \dfrac{\dfrac{4tanx}{1-tan^2x}}{[1-\dfrac{4tan^2x}{(1-tan^2x})^2]}\)

\( tan4x=\dfrac{4tanx(1-tan^2x)}{1-6tan^2x+tan^4x}\)

Further computing, we obtain

\( \dfrac{\dfrac{4tanx}{1-tan^2x}}{[\dfrac{(1-tan^2x)^24tan^2x)}{(1-tan^2x)^2}]}\)

\( \dfrac{4tanx(1-tan^2x)}{1+tan^4x-2tan^2x-4tan^2x}\)

\( \dfrac{4tanx(1-tan^2x)}{1-6tan^2x+tan^4x}\)

= R.H.S.

Hence proved.

Answered by Pragya Singh | 1 year ago

Related Questions

prove that \(sin \dfrac{8π}{3} cos \dfrac{23π}{6} + cos \dfrac{13π}{3} sin \dfrac{35π}{6} = \dfrac{1}{2}\)

Class 11 Maths Trigonometric Functions View Answer

prove that \( 3 sin \dfrac{π}{6} sec \dfrac{π}{3} – 4 sin \dfrac{5π}{6} cot \dfrac{π}{4} = 1\)

Class 11 Maths Trigonometric Functions View Answer

prove that \( tan \dfrac{11π}{3} – 2 sin \dfrac{4π}{6} – \dfrac{3}{4} cosec^2 \dfrac{π}{4} + 4 cos^2 \dfrac{17π}{6} = \dfrac{(3 – 4\sqrt{3})}{2}\)

Class 11 Maths Trigonometric Functions View Answer