Find the principal and general solutions of the question \( tanx=\sqrt{3}\)

Asked by Pragya Singh | 1 year ago |  94

1 Answer

Solution :-

Here given that,

\( tanx=\sqrt{3}\)

We know that

\( tan\dfrac{\pi}{3}=\sqrt{3}\)

and \( tan\dfrac{4\pi}{3}= tan(\pi+\dfrac{\pi}{3})\)

\( = tan\dfrac{\pi}{3}=\sqrt{3}\)

Therefore, the principal solutions are

\(x= \dfrac{\pi}{3}\) and \( \dfrac{4\pi}{3}\)

Now, \( tanx=tan\dfrac{\pi}{3}\)

Which implies,

\( x=n\pi + \dfrac{\pi}{3},n\in Z\)

Answered by Abhisek | 1 year ago

Related Questions

prove that \(sin \dfrac{8π}{3} cos \dfrac{23π}{6} + cos \dfrac{13π}{3} sin \dfrac{35π}{6} = \dfrac{1}{2}\)

Class 11 Maths Trigonometric Functions View Answer

prove that \( 3 sin \dfrac{π}{6} sec \dfrac{π}{3} – 4 sin \dfrac{5π}{6} cot \dfrac{π}{4} = 1\)

Class 11 Maths Trigonometric Functions View Answer

prove that \( tan \dfrac{11π}{3} – 2 sin \dfrac{4π}{6} – \dfrac{3}{4} cosec^2 \dfrac{π}{4} + 4 cos^2 \dfrac{17π}{6} = \dfrac{(3 – 4\sqrt{3})}{2}\)

Class 11 Maths Trigonometric Functions View Answer