Find the principal and general solutions of the equation secx=2

Asked by Pragya Singh | 1 year ago |  58

1 Answer

Solution :-

Here it is given that,

secx=2

Now we know that

\( sec= \dfrac{\pi}{3}=2\) and

\( sec\dfrac{5\pi}{3}=sec(2\pi- \dfrac{\pi}{3})\)

\( sec\dfrac{\pi}{3}=2\)

Therefore, the principal solutions are

\( \dfrac{\pi}{3}\) and \( \dfrac{5\pi}{3}\)

Now, \( secx=sec \dfrac{\pi}{3}\)

and we know ,

\( secx=\dfrac{1}{cosx}\)

Therefore , we have,

\( cosx=cos \dfrac{\pi}{3}\)

Which implies,

\( x=2nπ\pm \dfrac{\pi}{3},n\in Z\)

Answered by Abhisek | 1 year ago

Related Questions

prove that \(sin \dfrac{8π}{3} cos \dfrac{23π}{6} + cos \dfrac{13π}{3} sin \dfrac{35π}{6} = \dfrac{1}{2}\)

Class 11 Maths Trigonometric Functions View Answer

prove that \( 3 sin \dfrac{π}{6} sec \dfrac{π}{3} – 4 sin \dfrac{5π}{6} cot \dfrac{π}{4} = 1\)

Class 11 Maths Trigonometric Functions View Answer

prove that \( tan \dfrac{11π}{3} – 2 sin \dfrac{4π}{6} – \dfrac{3}{4} cosec^2 \dfrac{π}{4} + 4 cos^2 \dfrac{17π}{6} = \dfrac{(3 – 4\sqrt{3})}{2}\)

Class 11 Maths Trigonometric Functions View Answer