Find the principal and general solutions of the equation \( cotx=-\sqrt{3}\)

Asked by Pragya Singh | 1 year ago |  92

1 Answer

Solution :-

Here it is given that,

\( cotx=-\sqrt{3}\)

Now we know that

\( cot=\dfrac{\pi}{6}=\sqrt{3}\)

And

\( cot=(\pi-\dfrac{\pi}{6})\)

\(- cot=\dfrac{\pi}{6}\)

\( -\sqrt{3}\)

\( cot=(2\pi-\dfrac{\pi}{6})=-cot\dfrac{\pi}{6}\)

 

=  \( -\sqrt{3}\)

Therefore we have,

\( cot\dfrac{5\pi}{6}= -\sqrt{3}\) and \( cot\dfrac{11\pi}{6}= -\sqrt{3}\)

Therefore, the principal solutions are

\(x=\dfrac{5\pi}{6}\;and\;\dfrac{11\pi}{6}\)

And we know \(cotx= \dfrac{1}{tanx}\)

Therefore we have,

\( tanx=tan\dfrac{5\pi}{6}\)

Which implies,

\( x=n\pi \pm \dfrac{5\pi}{6}\) , where \( n\in Z \)

Answered by Abhisek | 1 year ago

Related Questions

prove that \(sin \dfrac{8π}{3} cos \dfrac{23π}{6} + cos \dfrac{13π}{3} sin \dfrac{35π}{6} = \dfrac{1}{2}\)

Class 11 Maths Trigonometric Functions View Answer

prove that \( 3 sin \dfrac{π}{6} sec \dfrac{π}{3} – 4 sin \dfrac{5π}{6} cot \dfrac{π}{4} = 1\)

Class 11 Maths Trigonometric Functions View Answer

prove that \( tan \dfrac{11π}{3} – 2 sin \dfrac{4π}{6} – \dfrac{3}{4} cosec^2 \dfrac{π}{4} + 4 cos^2 \dfrac{17π}{6} = \dfrac{(3 – 4\sqrt{3})}{2}\)

Class 11 Maths Trigonometric Functions View Answer