Find the general solution of the equation cos4x=cos2x

Asked by Pragya Singh | 1 year ago |  65

1 Answer

Solution :-

Here it is given that, cos4x=cos2x

Which implies,

cos4x-cos2x=0

Now we know that,

cosA-cosB=-2sin\( ( \dfrac{A+B}{2})sin( \dfrac{A-B}{2})\)

Therefore we have,

\(-2sin= ( \dfrac{4x+2x}{2})sin( \dfrac{4x-2x}{2})=0\)

sin3xsinx=0

Hence we have, sin3x=0

Or, sinx=0

Therefore, 3x=nπ

or x=nπ ,where \( n\in Z\)

\(x= \dfrac{n\pi}{3}\)

or x=nπ ,where \( n\in Z\)

Answered by Abhisek | 1 year ago

Related Questions

prove that \(sin \dfrac{8π}{3} cos \dfrac{23π}{6} + cos \dfrac{13π}{3} sin \dfrac{35π}{6} = \dfrac{1}{2}\)

Class 11 Maths Trigonometric Functions View Answer

prove that \( 3 sin \dfrac{π}{6} sec \dfrac{π}{3} – 4 sin \dfrac{5π}{6} cot \dfrac{π}{4} = 1\)

Class 11 Maths Trigonometric Functions View Answer

prove that \( tan \dfrac{11π}{3} – 2 sin \dfrac{4π}{6} – \dfrac{3}{4} cosec^2 \dfrac{π}{4} + 4 cos^2 \dfrac{17π}{6} = \dfrac{(3 – 4\sqrt{3})}{2}\)

Class 11 Maths Trigonometric Functions View Answer