Find the general solution of the equation sin2x+cosx=0

Asked by Pragya Singh | 1 year ago |  52

1 Answer

Solution :-

It is given that

sin 2x + cos x = 0

We can write it as

2 sin x cos x + cos x = 0

cos x (2 sin x + 1) = 0

cos x = 0 or 2 sin x + 1 = 0

Let cos x = 0

Or, \( sinx=-\dfrac{1}{2} \)

Hence we have,

\( x=(2n+1)\dfrac{\pi}{2} \), where \( n \in Z\)

\( -sin=\dfrac{\pi}{6}\)

\( sin=(\pi-\dfrac{7\pi}{6})\)

\( sin=(\dfrac{7\pi}{6})\)

Which implies

\( x=nπ+(-1)^n\dfrac{7\pi}{6}\), where \( n \in Z\)

Therefore, the general solution is\( (2n +1)\dfrac{\pi}{2}\) 

or \( nπ+(-1)^n\dfrac{7\pi}{6}, n \in Z\)

Answered by Abhisek | 1 year ago

Related Questions

prove that \(sin \dfrac{8π}{3} cos \dfrac{23π}{6} + cos \dfrac{13π}{3} sin \dfrac{35π}{6} = \dfrac{1}{2}\)

Class 11 Maths Trigonometric Functions View Answer

prove that \( 3 sin \dfrac{π}{6} sec \dfrac{π}{3} – 4 sin \dfrac{5π}{6} cot \dfrac{π}{4} = 1\)

Class 11 Maths Trigonometric Functions View Answer

prove that \( tan \dfrac{11π}{3} – 2 sin \dfrac{4π}{6} – \dfrac{3}{4} cosec^2 \dfrac{π}{4} + 4 cos^2 \dfrac{17π}{6} = \dfrac{(3 – 4\sqrt{3})}{2}\)

Class 11 Maths Trigonometric Functions View Answer