Find the general solution of the equation sec2 2x = 1 – tan 2x

Asked by Pragya Singh | 1 year ago |  127

1 Answer

Solution :-

It is given that

sec2 2x = 1 – tan 2x

We can write it as

1 + tan2 2x = 1 – tan 2x

tan2 2x + tan 2x = 0

Taking common terms

tan 2x (tan 2x + 1) = 0

Here

tan 2x = 0 or tan 2x + 1 = 0

If tan 2x = 0

tan 2x = tan 0

We get

2x = nπ + 0, where n ∈ Z

x =\( \dfrac{n\pi}{2}\), where n ∈ Z

tan 2x + 1 = 0

We can write it as

tan 2x = – 1

So we get

\(- tan\dfrac{\pi}{4}= tan(\pi-\dfrac{\pi}{4})\)

Here

2x = nπ + \( \dfrac{3\pi}{4}\), where n ∈ Z

x = \( \dfrac{n\pi}{2}+ \dfrac{3\pi}{8}\)  \(\), where n ∈ Z

Hence, the general solution is \( \dfrac{n\pi}{2}\)or \( \dfrac{n\pi}{2}\) +\( \dfrac{3\pi}{8}\), n ∈ Z.

Answered by Abhisek | 1 year ago

Related Questions

prove that \(sin \dfrac{8π}{3} cos \dfrac{23π}{6} + cos \dfrac{13π}{3} sin \dfrac{35π}{6} = \dfrac{1}{2}\)

Class 11 Maths Trigonometric Functions View Answer

prove that \( 3 sin \dfrac{π}{6} sec \dfrac{π}{3} – 4 sin \dfrac{5π}{6} cot \dfrac{π}{4} = 1\)

Class 11 Maths Trigonometric Functions View Answer

prove that \( tan \dfrac{11π}{3} – 2 sin \dfrac{4π}{6} – \dfrac{3}{4} cosec^2 \dfrac{π}{4} + 4 cos^2 \dfrac{17π}{6} = \dfrac{(3 – 4\sqrt{3})}{2}\)

Class 11 Maths Trigonometric Functions View Answer