Prove that: sin x + sin 3x + sin 5x + sin 7x = 4 cos x cos 2x sin 4x

Asked by Pragya Singh | 1 year ago |  105

1 Answer

Solution :-

We know that

sinA+sinB=2sin\( ( \dfrac{A+B}{2})cos( \dfrac{A-B}{2})\)

L.H.S. =sinx+sin3x+sin5x+sin7x

=(sinx+sin5x)+(sin3x+sin7x)

Using the formula and simplifying,

\(2sin ( \dfrac{x+5x}{2}).cos( \dfrac{x-5x}{2})\)

\( 2sin ( \dfrac{3x+7x}{2})cos( \dfrac{3x-7x}{2})\)

=2cos2x[sin3x+sin5x]

\( 2cos2x [2sin (\dfrac{3x+5x}{2}).cos( \dfrac{3x-5x}{2})]\)

=2cos2x[2sin4x.cos(-x)]

Therefore we have,

L.H.S=4cos2xsin4xcosx

R.H.S

Answered by Abhisek | 1 year ago

Related Questions

prove that \(sin \dfrac{8π}{3} cos \dfrac{23π}{6} + cos \dfrac{13π}{3} sin \dfrac{35π}{6} = \dfrac{1}{2}\)

Class 11 Maths Trigonometric Functions View Answer

prove that \( 3 sin \dfrac{π}{6} sec \dfrac{π}{3} – 4 sin \dfrac{5π}{6} cot \dfrac{π}{4} = 1\)

Class 11 Maths Trigonometric Functions View Answer

prove that \( tan \dfrac{11π}{3} – 2 sin \dfrac{4π}{6} – \dfrac{3}{4} cosec^2 \dfrac{π}{4} + 4 cos^2 \dfrac{17π}{6} = \dfrac{(3 – 4\sqrt{3})}{2}\)

Class 11 Maths Trigonometric Functions View Answer