We known that,
sinA+sinB=2sin\( ( \dfrac{A+B}{2}).cos( \dfrac{A-B}{2})\)
cosA+cosB=2cos\( ( \dfrac{A+B}{2}).cos( \dfrac{A-B}{2})\)
And L.H.S.=
\( \dfrac{(sin7x+sin5x)+(sin9x+sin3x)}{(cos7x+cos5x)+(cos9x+cos3x)}\)
Using the formula and simplifying,
= \( \dfrac{[2sin6x.cosx]+[2sin6x.cos3x]}{[2cos6x.cosx]+[2cos6x.cos6x]}\)
= \(\dfrac{2sin6x[cosx+cos3x]}{2cos6x[cosx+cos3x]}\)
=tan6x
Therefore L.H.S = R.H.S
Hence proved.
Answered by Abhisek | 1 year agoprove that \(sin \dfrac{8π}{3} cos \dfrac{23π}{6} + cos \dfrac{13π}{3} sin \dfrac{35π}{6} = \dfrac{1}{2}\)
prove that \( 3 sin \dfrac{π}{6} sec \dfrac{π}{3} – 4 sin \dfrac{5π}{6} cot \dfrac{π}{4} = 1\)
prove that \( tan \dfrac{11π}{3} – 2 sin \dfrac{4π}{6} – \dfrac{3}{4} cosec^2 \dfrac{π}{4} + 4 cos^2 \dfrac{17π}{6} = \dfrac{(3 – 4\sqrt{3})}{2}\)
prove that cos 570° sin 510° + sin (-330°) cos (-390°) = 0
prove that tan (-125°) cot (-405°) – tan (-765°) cot (675°) = 0