Prove that:\( \dfrac{(sin7x+sin5x)+(sin9x+sin3x)}{(cos7x+cos5x)+(cos9x+cos3x)}=tan6x\)

Asked by Pragya Singh | 1 year ago |  116

1 Answer

Solution :-

We known that,

sinA+sinB=2sin\( ( \dfrac{A+B}{2}).cos( \dfrac{A-B}{2})\)

cosA+cosB=2cos\( ( \dfrac{A+B}{2}).cos( \dfrac{A-B}{2})\)

And L.H.S.=

\( \dfrac{(sin7x+sin5x)+(sin9x+sin3x)}{(cos7x+cos5x)+(cos9x+cos3x)}\)

Using the formula and simplifying,

\( \dfrac{[2sin6x.cosx]+[2sin6x.cos3x]}{[2cos6x.cosx]+[2cos6x.cos6x]}\)

\(\dfrac{2sin6x[cosx+cos3x]}{2cos6x[cosx+cos3x]}\)

=tan6x

Therefore L.H.S = R.H.S

Hence proved.

Answered by Abhisek | 1 year ago

Related Questions

prove that \(sin \dfrac{8π}{3} cos \dfrac{23π}{6} + cos \dfrac{13π}{3} sin \dfrac{35π}{6} = \dfrac{1}{2}\)

Class 11 Maths Trigonometric Functions View Answer

prove that \( 3 sin \dfrac{π}{6} sec \dfrac{π}{3} – 4 sin \dfrac{5π}{6} cot \dfrac{π}{4} = 1\)

Class 11 Maths Trigonometric Functions View Answer

prove that \( tan \dfrac{11π}{3} – 2 sin \dfrac{4π}{6} – \dfrac{3}{4} cosec^2 \dfrac{π}{4} + 4 cos^2 \dfrac{17π}{6} = \dfrac{(3 – 4\sqrt{3})}{2}\)

Class 11 Maths Trigonometric Functions View Answer