Prove that: sin3x+sin2x-sinx = \( 4sinxcos\dfrac{x}{2}cos\dfrac{3x}{2}\)

Asked by Pragya Singh | 1 year ago |  121

1 Answer

Solution :-

We know that,

sinA+sinB=2sin\( ( \dfrac{A+B}{2}).cos( \dfrac{A-B}{2})\)

sinA-sinB=2sin\( ( \dfrac{A-B}{2}).cos( \dfrac{A+B}{2})\)

L.H.S.=sin3x+sin2x-sinx

\( sin3x+[2cos(\dfrac{2x+x}{2})(sin\dfrac{2x-x}{2})]\)

\( sin3x+[2cos(\dfrac{3x}{2})(sin\dfrac{x}{2})]\)

Since we know that, sin2x=2sinxcosx

L.H.S= \( 2sin\dfrac{3x}{2}.cos\dfrac{3x}{2}+2cos\dfrac{3x}{2}sin\dfrac{x}{2}\)

\( 2cos(\dfrac{3x}{2})[sin(\dfrac{3x}{2})+sin(\dfrac{x}{2})]\)

\( 2cos(\dfrac{3x}{2}).2sinxcos(\dfrac{x}{2})\)

L.H.S

=\(4sinxcos (\dfrac{x}{2})cos(\dfrac{3x}{2})\) =R.H.S

Answered by Abhisek | 1 year ago

Related Questions

prove that \(sin \dfrac{8π}{3} cos \dfrac{23π}{6} + cos \dfrac{13π}{3} sin \dfrac{35π}{6} = \dfrac{1}{2}\)

Class 11 Maths Trigonometric Functions View Answer

prove that \( 3 sin \dfrac{π}{6} sec \dfrac{π}{3} – 4 sin \dfrac{5π}{6} cot \dfrac{π}{4} = 1\)

Class 11 Maths Trigonometric Functions View Answer

prove that \( tan \dfrac{11π}{3} – 2 sin \dfrac{4π}{6} – \dfrac{3}{4} cosec^2 \dfrac{π}{4} + 4 cos^2 \dfrac{17π}{6} = \dfrac{(3 – 4\sqrt{3})}{2}\)

Class 11 Maths Trigonometric Functions View Answer