We know that,
sinA+sinB=2sin\( ( \dfrac{A+B}{2}).cos( \dfrac{A-B}{2})\)
sinA-sinB=2sin\( ( \dfrac{A-B}{2}).cos( \dfrac{A+B}{2})\)
L.H.S.=sin3x+sin2x-sinx
\( sin3x+[2cos(\dfrac{2x+x}{2})(sin\dfrac{2x-x}{2})]\)
\( sin3x+[2cos(\dfrac{3x}{2})(sin\dfrac{x}{2})]\)
Since we know that, sin2x=2sinxcosx
L.H.S= \( 2sin\dfrac{3x}{2}.cos\dfrac{3x}{2}+2cos\dfrac{3x}{2}sin\dfrac{x}{2}\)
\( 2cos(\dfrac{3x}{2})[sin(\dfrac{3x}{2})+sin(\dfrac{x}{2})]\)
= \( 2cos(\dfrac{3x}{2}).2sinxcos(\dfrac{x}{2})\)
L.H.S
=\(4sinxcos (\dfrac{x}{2})cos(\dfrac{3x}{2})\) =R.H.S
Answered by Abhisek | 1 year agoprove that \(sin \dfrac{8π}{3} cos \dfrac{23π}{6} + cos \dfrac{13π}{3} sin \dfrac{35π}{6} = \dfrac{1}{2}\)
prove that \( 3 sin \dfrac{π}{6} sec \dfrac{π}{3} – 4 sin \dfrac{5π}{6} cot \dfrac{π}{4} = 1\)
prove that \( tan \dfrac{11π}{3} – 2 sin \dfrac{4π}{6} – \dfrac{3}{4} cosec^2 \dfrac{π}{4} + 4 cos^2 \dfrac{17π}{6} = \dfrac{(3 – 4\sqrt{3})}{2}\)
prove that cos 570° sin 510° + sin (-330°) cos (-390°) = 0
prove that tan (-125°) cot (-405°) – tan (-765°) cot (675°) = 0