Find sin \( \dfrac{x}{2} \), cos\( \dfrac{x}{2} \) and tan\( \dfrac{x}{2} \) if \( tanx=-\dfrac{4}{3}\), x lies in 2nd quadrant

Asked by Pragya Singh | 1 year ago |  111

1 Answer

Solution :-

Here, x is in 2nd quadrant.

Therefore ,

\(\dfrac{\pi}{4}< \dfrac{x}{2}< \dfrac{\pi}{2}\)

hence 

\( \dfrac{x}{2}\) lies in 1st quadrant.

Therefore,

\(sin\dfrac{x}{2},cos\dfrac{x}{2}\;and\;tan\dfrac{x}{2}\) are positive.

Given that tanx = \(- \dfrac{4}{3} \)

We know that,

\( sec^2x=1+tan^2x\)

\(=1+(-\dfrac{4}{3})^2\)

\(\dfrac{25}{9}\)

As x is in 2nd quadrant, secx is negative.

Therefore ,
\( secx=-\dfrac{5}{3}\)

Then

\( cosx=-\dfrac{3}{5}\)

Now we know that, \( 2cos^2\dfrac{x}{2}=cosx+1\)

Computing we get, 

\(2cos^2 \dfrac{x}{2}= \dfrac{2}{5}\)

\( cos\dfrac{x}{2}=\dfrac{1}{\sqrt{5}}\)

Now we know that, sin2x+cos2x=1

Therefore substituting \( cos\dfrac{x}{2}=\dfrac{1}{\sqrt{5}}\) and computing,

\( sin\dfrac{x}{2}=\dfrac{2}{\sqrt{5}}\)

Hence ,

\( tan=\dfrac{x}{2}=\dfrac{sin\dfrac{x}{2}}{cos\dfrac{x}{2}}\) = 2

Thus, the respective values of \( sin\dfrac{x}{2},cos\dfrac{x}{2}\;and\;tan\dfrac{x}{2}\) are

\( \dfrac{2\sqrt{5}}{5}, \dfrac{\sqrt{5}}{5},2\)

Answered by Abhisek | 1 year ago

Related Questions

prove that \(sin \dfrac{8π}{3} cos \dfrac{23π}{6} + cos \dfrac{13π}{3} sin \dfrac{35π}{6} = \dfrac{1}{2}\)

Class 11 Maths Trigonometric Functions View Answer

prove that \( 3 sin \dfrac{π}{6} sec \dfrac{π}{3} – 4 sin \dfrac{5π}{6} cot \dfrac{π}{4} = 1\)

Class 11 Maths Trigonometric Functions View Answer

prove that \( tan \dfrac{11π}{3} – 2 sin \dfrac{4π}{6} – \dfrac{3}{4} cosec^2 \dfrac{π}{4} + 4 cos^2 \dfrac{17π}{6} = \dfrac{(3 – 4\sqrt{3})}{2}\)

Class 11 Maths Trigonometric Functions View Answer