Find sin \( \dfrac{x}{2} \), cos\( \dfrac{x}{2} \) and tan\( \dfrac{x}{2} \) if \(sinx=\dfrac{1}{4}\), x lies in 2nd quadrant

Asked by Pragya Singh | 1 year ago |  153

1 Answer

Solution :-

Here, x lies in 2nd quadrant.

Therefore,

\( \dfrac{\pi}{4}< \dfrac{x}{2}< \dfrac{\pi}{2}\)

hence 

\( \dfrac{x}{2}\) lies in 1st quadrant.

Therefore,

\( sin\dfrac{x}{2},cos\dfrac{x}{2}\;and\;tan\dfrac{x}{2}\) are positive

Given that sinx = \( \dfrac{1}{4} \)

Now we know that, sin2x+cos2x=1

Therefore substituting \( si nx=\dfrac{1}{4}\) and computing ,

\( cosx=-\dfrac{\sqrt{15}}{4}\)

since x lies in 2nd quadrant, cosx is negative.

Now we know that,\( 2sin^2\dfrac{x}{2} =1-cosx\)

Computing we get, \( 2sin^2\dfrac{x}{2} =1+\dfrac{\sqrt{15}}{4}\)

 Hence 

\( sin\dfrac{x}{2}=\sqrt{\dfrac{4+\sqrt{15}}{8}}\)

Now we know that, sin2x+cos2x=1

Therefore substituting

\( sin\dfrac{x}{2}=\sqrt{\dfrac{4+\sqrt{15}}{8}}\) and computing,

\( cos\dfrac{x}{2}=\sqrt{\dfrac{4+\sqrt{15}}{8}}\)

Hence,

\(tan\dfrac{x}{2}=\dfrac{sinx\dfrac{x}{2}}{cos\dfrac{x}{2}}\)

\(=\dfrac{\sqrt{4+\sqrt{15}}}{\sqrt{4-\sqrt{15}}}\)

\( 4\pm\sqrt{15}\)

Answered by Abhisek | 1 year ago

Related Questions

prove that \(sin \dfrac{8π}{3} cos \dfrac{23π}{6} + cos \dfrac{13π}{3} sin \dfrac{35π}{6} = \dfrac{1}{2}\)

Class 11 Maths Trigonometric Functions View Answer

prove that \( 3 sin \dfrac{π}{6} sec \dfrac{π}{3} – 4 sin \dfrac{5π}{6} cot \dfrac{π}{4} = 1\)

Class 11 Maths Trigonometric Functions View Answer

prove that \( tan \dfrac{11π}{3} – 2 sin \dfrac{4π}{6} – \dfrac{3}{4} cosec^2 \dfrac{π}{4} + 4 cos^2 \dfrac{17π}{6} = \dfrac{(3 – 4\sqrt{3})}{2}\)

Class 11 Maths Trigonometric Functions View Answer