\( \lim\limits_{x \to \dfrac{\pi}{2}}\dfrac{tan2x}{x-\dfrac{\pi}{2}}\)
At \( x=\dfrac{\pi}{2}\) the value of the given function takes the form \( \dfrac{0}{0}\)
Now, put So that \( x-\dfrac{\pi}{2}=y\) so that \( x\rightarrow \dfrac{\pi}{2},y\rightarrow 0\)
\( \lim\limits_{y \to 0}\dfrac{(y+\dfrac{\pi}{2})}{y}\)
\( \lim\limits_{y \to 0}\dfrac{tan2y}{y}\)
\( \lim\limits_{y \to 0}\dfrac{sin2y}{cos2y}\)
\( ( \lim\limits_{y \to 0}\dfrac{sin2y}{2y})\times ( \lim\limits_{y \to 0}\times \dfrac{2}{cos2y})\)
\( 1\times \dfrac{2}{cos0}\)
\( 1\times \dfrac{2}{1}\)
= 2
Answered by Pragya Singh | 1 year ago