The given function is
\( \lim\limits_{x \to 0^-}f(x)= \lim\limits_{x \to 0^-}[\dfrac{x}{|x|}]\) \(\)
\( \lim\limits_{x \to 0}(\dfrac{x}{-x})\)
\( \lim\limits_{x \to 0}(-1)\)
= -1
\( \lim\limits_{x \to 0^+}f(x)= \lim\limits_{x \to 0^+}[\dfrac{x}{|x|}]\)
\( \lim\limits_{x \to 0}(\dfrac{x}{x})\)
\( \lim\limits_{x \to 0}(1)\)
It is observed that \( \lim\limits_{x \to 0^-}f(x)\neq\lim\limits_{x \to 0^+}f(x)\)
Hence, \( \lim\limits_{x \to 0}f(x)\) does not exist
Answered by Pragya Singh | 1 year ago