The given function is \( f(x) =|x|-5\)
\( \lim\limits_{x \to 5^-}f(x)= \lim\limits_{x \to 5^-}(|x|-5)\)
\( \lim\limits_{x \to 5}(x-5)\)
= 5-5 = 0
\( \lim\limits_{x \to 5^+}f(x)= \lim\limits_{x \to 5^+}(|x|-5)\)
\( \lim\limits_{x \to 5}(x-5)\)
= 5-5=0
\( \lim\limits_{x \to 5^-}f(x)= \lim\limits_{x \to 5^+}f(x)=0\)
Hence, \( \lim\limits_{x \to 5}f(x)=0\)
Answered by Pragya Singh | 1 year ago