Find \( \lim\limits_{x \to 5}f(x)\) where \( f(x)=|x|-5\)

Asked by Abhisek | 1 year ago |  64

1 Answer

Solution :-

The given function is \( f(x) =|x|-5\)

\( \lim\limits_{x \to 5^-}f(x)= \lim\limits_{x \to 5^-}(|x|-5)\)

\( \lim\limits_{x \to 5}(x-5)\)

= 5-5 = 0

\( \lim\limits_{x \to 5^+}f(x)= \lim\limits_{x \to 5^+}(|x|-5)\)

\( \lim\limits_{x \to 5}(x-5)\)

= 5-5=0

\( \lim\limits_{x \to 5^-}f(x)= \lim\limits_{x \to 5^+}f(x)=0\)

Hence, \( \lim\limits_{x \to 5}f(x)=0\)

Answered by Pragya Singh | 1 year ago

Related Questions